

Performance Through Carbon Chemistry

www.nanoxplore.ca

Proprietary Technology

Cost Effective

Forward-Looking Statements

Forward-Looking Statements.

This presentation contains express or implied forward-looking statements, which are based on current expectations of management. These statements relate to, among other things, our expectations regarding management's plans, objectives, and strategies. All statements other than statements of historical fact could be deemed forward-looking, including, but not limited to, any projections of financial information; any statements about historical results that may suggest trends for our business and results of operations; any statements of the plans, strategies and objectives of management for future operations, including the timing, funding and construction of planned manufacturing facilities and sales offices; any statements of expectation or belief regarding future events, potential markets or applications, the sizes of addressable markets, expected technology developments, strategic partnerships and collaborations, or enforceability of our intellectual property rights; any statements about the projected or expected economic or other benefits of our products compared to petroleum-derived equivalents, future sales and any statements of assumptions underlying any of the foregoing.

Forward-looking statements are subject to a number of risks, assumptions and uncertainties, many of which involve factors or circumstances that are beyond our control.

www.nanoxplore.ca

Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee that the events and circumstances reflected in the forward-looking statements will be achieved or occur and the timing of events and circumstances and actual results could differ materially from those projected in the forward-looking statements. Accordingly, you should not place undue reliance on these forward-looking statements. All such statements speak only as of the date made, and we undertake no obligation to update or revise publicly any forward-looking statements, whether as a result of new information, future events or otherwise.

Trademarks.

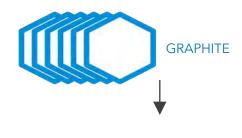
Our trademarks may not be copied, imitated or used, in whole or in part, without our prior written permission. Other trademarks, registered trademarks or logos, company names or logos displayed in this presentation are the property of their owners.

Company Snapshot

NanoXplore is a specialty chemical company. We are a manufacturer and supplier of advanced components and solutions based on our proprietary graphene technology. We serve transportation, renewable energy, energy storage and industrial markets.

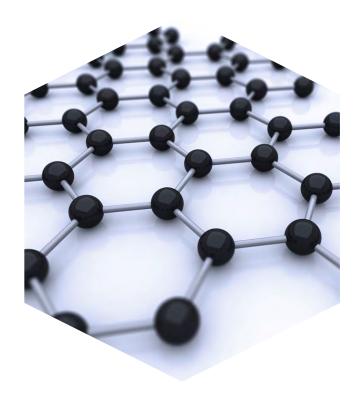
- We are a public company, headquartered in Montreal, Quebec and trade on the TSX Venture Exchange under symbol "GRA" and on the OTCQX under symbol "NNXPF" (Market Cap ~\$0.5B¹)
- We have the largest graphene production capacity in the world² with a fully automated facility that can produce 4,000-metric tons per year of graphene powder
- We offer graphene based solutions and composite parts for transportation, renewable energy, energy storage, and industrial markets
- We are a global company. We are a group of nearly 400 people and operate 8 production plants in Canada, Switzerland, and the United States, that support graphene production and composite parts manufacturing

- We have strong strategic and institutional shareholders: Martinrea International Inc. (MRE:TSX), one of the largest auto parts suppliers in North America, Fidelity Investments, Investissement Québec, Caisse de dépot et placement du Québec, BDC CleanTech
- We hold a strong IP portfolio with multiple patents on graphene production, applications in composites and energy storage
- We service multiple Blue-Chip customers, some of which include Volvo Truck, Paccar, GE, Daimler, Volvo Bus, Caterpillar, and Itron


(1) As of Dec. 8th, 2020

(2) IDTechEx Research, Dr. Richard Collins,
"Is the Tipping Point for Graphene Commercialisation Approaching?"

What Is Graphene?


Discovered at Manchester University in 2004.
Nobel Prize awarded in 2010

EXFOLIATION

Graphene is pure carbon consisting of carbon atoms arranged in a few-layer honeycomb lattice

Largest Graphene Producer

- A global graphene market leader and largest producer of graphene, being traded on the TSX Venture Exchange under symbol "GRA"
- Currently employs nearly 400 people with 8 production plants in North America and Europe
- Headquartered in Montreal, QC, Canada

Moving The Market

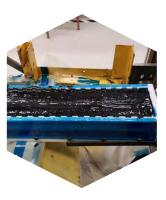
4,000 ton/yr. Graphene Facility

- We take natural flake graphite (>100,000 layers of carbon) and exfoliate the material via a mechanical-liquid exfoliation process proprietary to NanoXplore
- We produce very consistent and high-quality graphene in volume (6-10 atomic layers in thickness with 96-98% purity)
- Our new, state-of-the-art facility is a significant milestone for the company and the graphene industry

4500 Thimens Blvd., Montreal, QC H4R 2P2

NanoXplore's Current Graphene Offerings

Graphene Powder



Graphene in Thermoplastics

www.nanoxplore.ca

Graphene in Thermosets

Graphene-enhanced Molded Products

Our Business Model

Basic Ingredient

- Graphite
- CBFS
- CH4
- PolyAcryloNitril

Enabled Raw Materials

- Graphene
- Spherical graphite
- Carbon Black
- Carbon fiber
- Carbon Nanotube

Graphene Powder, Spherical Graphite

Company	1	2	3	4
Imerys				
Nippon Carbon		•		
Cabot Corp.		•	•	
Showa Denko	•	•	•	
Tokai Carbon		•	•	
Toray	•	•	•	•
Teijin		•	•	•

Blends & Compounds

- Black Masterbatch
- Performance compounds
- Anode paste

Graphene Black Masterbatch, Graphene Anode Paste

4

Formed Plastic/Coatings

www.nanoxplore.ca

- SMC
- Pultrusion
- Injection

Graphene Enabled Composite and Molded Parts

Graphene Market Applications

Target Industries

- Transportation & Automotive
- Energy Storage & Batteries
- Electronic Enclosures
- Tires & Rubbers
- Paints & Coatings
- Pipes & Tubes
- Consumer Packaging

Graphene is making great strides into multiple industries and verticals with results exceeding expectation.

Examples In Transportation

Truck Hood

Technology: Sheet Molding Compound (SMC)

Compressive Strength

Light weighting

Processability

UV Resistance

Light-weight composite hoods made with graphene demonstrate smoother surface finish compared to traditional ones. Graphene also increases the strength and stiffness of the composite hoods, enabling weight reduction for molded parts.

Examples In Transportation

Brake Lines

Material	Number of abrasion cycles	Improvement
Nylon/Graphene	>150,000	30X

www.nanoxplore.ca

Abrasion Resistance

Extend Lifetime

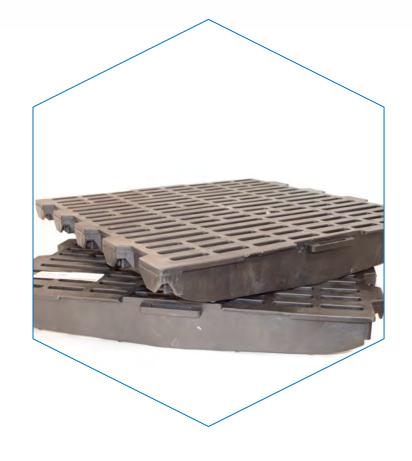
Examples In Renewable Energy

Windmill Blades

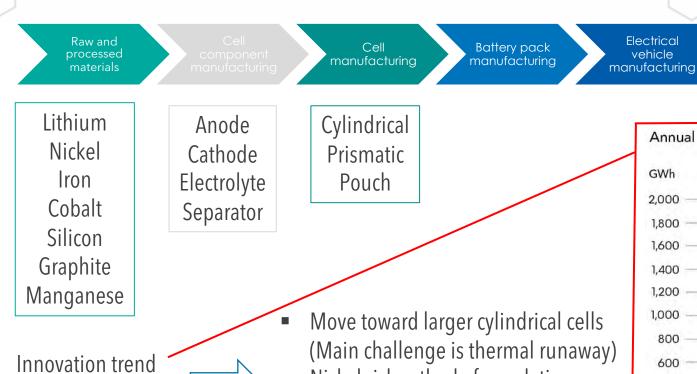
Graphene increases the strength and reduces the weight

Industrial and Agricultural flooring

Examples:

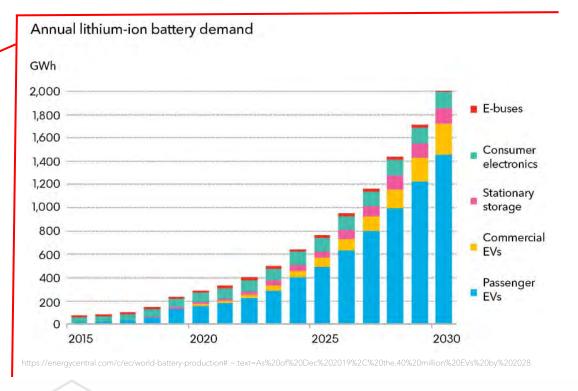

Recyclability

Flooring parts made with 100% recycled plastics


Graphene enables the use of recycled polypropylene without any virgin plastic

www.nanoxplore.ca

Parts are fully recyclable at the end of life


Li-ion Battery Supply Chain

(Main challenge is thermal runaway)

Nickel rich cathode formulation (minimize cobalt consumption)

Silicon rich anode formulation (minimize graphite consumption)

(in-line with

Presentation)

Tesla battery day

Electrical

vehicle

Recycling

Graphene As An Additive In Batteries

Additive in NMC111 cathode

Material	Discharge Capacity Improvement		
Super-P (Carbon Black)	-		
Graphene 0X	5%		

Extend Lifetime

Improve energy density, charge rate, and cycle life with Graphene

Material	Reversible Capacity	
MAGD (synthetic graphite)	340 mAh/g	
Graphene 0X	345 mAh/g	

Silicon Anode

	Graphite	Silicon		
Intercalation Reaction	Li + 6C ←→ LiC ₆	4.4Li + Si ←→ Li _{4.4} Si		
Potential vs Li/Li+	0.05 V	0.4 V		
Gravimetric Capacity	372 mAh/g	4200 mAh/g		

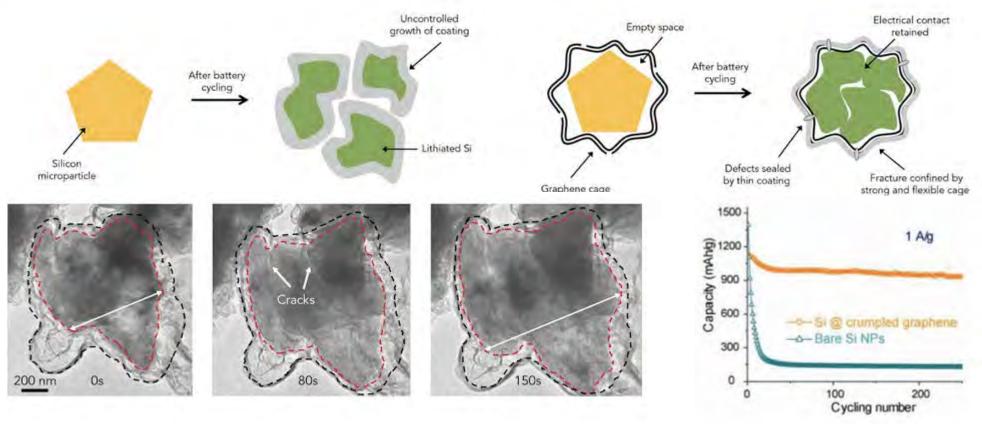
- >10x (theoretical) increase in lithium storage capacity
- Vastly abundant
- Environmentally benign
- Well understood from semiconductor industry

Current Li-lon Battery

Anode
(Graphite)

Cathode
(Metal oxide)

Si enabled Li-lon Battery


Silicon Anode

(Metal oxide)

System	mAh/g (AM _{Anode})	mAh/g (AM _{Total})	Capacity Increase
Silicon / NMC	2000	156	46%
Graphite / NMC	370	107	

Source: Nexeon.co.uk

Graphene Silicon Anodes

Time-lapse images from an electron microscope show a silicon microparticle expanding and cracking within its graphene cage as lithium ions rush in during battery charging. The cage is outlined in black, and the particle in red. (Y. Li et al., Nature Energy)

Graphene Technical Benefits

Mechanical Properties

Thermal Dissipation

EMI Shielding & ESD

Barrier Properties

Processability

Thermal Stability

Extend Lifetime

Light weighting

Graphene Technical Benefits

Oxidation Resistance

Permanent Anti-Static

Electrical Conductivity

UV Resistance

Moisture Barrier

Colorable

Compressive Strength

4500 Thimens Blvd., Montreal, Qc H4R 2P2

Cost Reduction

Graphene Technical Benefits

Abrasion Resistance

Recyclability

Corrosion Resistance

Lubricant

Weathering Resistance

Improved Cycle Time

Sound dampening

www.nanoxplore.ca

Flame Retardant

Execution Strategy

Phase 1 Coin cell level 2015-2019

Phase 3 Commercial production line 2022-2024

Phase 2 Pilot line 2020-2021

Phase 1:

- Lab testing is completed regarding graphene additive for anodes and cathodes paste
- First patent has already been published
- Funding needs for pilot lines has already been obtained

Phase 2:

- Feasibility report started in 2020
- Set up of a pilot line to produce anode paste
- Customer validation
- Supply chain partnership

www.nanoxplore.ca

Obtaining permits, certifications and standards

Phase 3:

- Depending on the result of feasibility study, set up an anode paste manufacturing plant
- Construction, commissioning and start of production

| 21

Financial And Capital Structure

Analyst Coverage

Rupert Merer

Amr Ezzat

MacMurray Whale

Ahmad Shaath

Marvin Wolff

Michael Glen

Capital Structure (1)

NanoXplore Symbol: GRA | NNXPF

Listed Exchange: TSX-V | OTCQX Basic Shares: 146 230 059

Stock Price: \$4.19

Convertible Debentures: -

Options: 3 583 466

Fully Diluted: 149 813 525

Market Cap: \$0.6B

(1) As of Dec 31st, 2020

Performance Through Carbon Technology

Management Team

Rocco Marinaccio | COO

Luc Veilleux, CPA, CA | CFO

